
Advanced
Linux
Programming

Contents At a Glance
I Advanced UNIX Programming

with Linux

1 Getting Started 3

2 Writing Good GNU/Linux
Software 17

3 Processes 45

4 Threads 61

5 Interprocess Communication 95

II Mastering Linux

6 Devices 129

7 The /proc File System 147

8 Linux System Calls 167

9 Inline Assembly Code 189

10 Security 197

11 A Sample GNU/Linux
Application 219

III Appendixes

A Other Development Tools 259

B Low-Level I/O 281

C Table of Signals 301

D Online Resources 303

E Open Publication License
Version 1.0 305

F GNU General Public License 309

00 0430 FM 5/22/01 2:32 PM Page i

00 0430 FM 5/22/01 2:32 PM Page ii

Advanced Linux
Programming

201 West 103rd Street, Indianapolis, Indiana 46290
An Imprint of Pearson Education
Boston • Indianapolis • London • Munich • New York • San Francisco

Mark Mitchell, Jeffrey Oldham,
and Alex Samuel

www.newriders.com

00 0430 FM 5/22/01 2:32 PM Page iii

Publisher
David Dwyer

Associate Publisher
Al Valvano

Executive Editor
Stephanie Wall

Managing Editor
Gina Brown

Acquisitions Editor
Ann Quinn

Development Editor
Laura Loveall

Product Marketing
Manager
Stephanie Layton

Publicity Manager
Susan Petro

Project Editor
Caroline Wise

Copy Editor
Krista Hansing

Senior Indexer
Cheryl Lenser

Manufacturing
Coordinator
Jim Conway

Book Designer
Louisa Klucznik

Cover Designer
Brainstorm Design, Inc.

Cover Production
Aren Howell

Proofreader
Debra Neel

Composition
Amy Parker

Advanced Linux Programming
Copyright © 2001 by New Riders Publishing

FIRST EDITION: June, 2001

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written
permission from the publisher, except for the inclusion of
brief quotations in a review.

International Standard Book Number: 0-7357-1043-0

Library of Congress Catalog Card Number: 00-105343

05 04 03 02 01 7 6 5 4 3 2 1

Interpretation of the printing code:The rightmost double-
digit number is the year of the book’s printing; the right-
most single-digit number is the number of the book’s
printing. For example, the printing code 01-1 shows that the
first printing of the book occurred in 2001.

Composed in Bembo and MCPdigital by New Riders
Publishing.

Printed in the United States of America.

Trademarks
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capital-
ized. New Riders Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service
mark.

PostScript is a trademark of Adobe Systems, Inc.

Linux is a trademark of Linus Torvalds.

Warning and Disclaimer
This book is designed to provide information about
Advanced Linux Programming. Every effort has been made to
make this book as complete and as accurate as possible, but
no warranty or fitness is implied.

The information is provided on an as-is basis.The authors
and New Riders Publishing shall have neither liability nor
responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this
book or from the use of the discs or programs that may
accompany it.

00 0430 FM 5/22/01 2:32 PM Page iv

00 0430 FM 5/22/01 2:32 PM Page v

Table of Contents

I Advanced UNIX Programming
with Linux 1

1 Getting Started 3
1.1 Editing with Emacs 4
1.2 Compiling with GCC 6
1.3 Automating the Process with GNU

Make 9
1.4 Debugging with GNU Debugger

(GDB) 11
1.5 Finding More Information 13

2 Writing Good GNU/Linux
Software 17
2.1 Interaction With the Execution

Environment 17
2.2 Coding Defensively 30
2.3 Writing and Using Libraries 36

3 Processes 45
3.1 Looking at Processes 45
3.2 Creating Processes 48
3.3 Signals 52
3.4 Process Termination 55

4 Threads 61
4.1 Thread Creation 62
4.2 Thread Cancellation 69
4.3 Thread-Specific Data 72
4.4 Synchronization and Critical Sections 77
4.5 GNU/Linux Thread Implementation 92
4.6 Processes Vs.Threads 94

00 0430 FM 5/22/01 2:32 PM Page vi

5 Interprocess Communication 95
5.1 Shared Memory 96
5.2 Processes Semaphores 101
5.3 Mapped Memory 105
5.4 Pipes 110
5.5 Sockets 116

II Mastering Linux 127

6 Devices 129
6.1 Device Types 130
6.2 Device Numbers 130
6.3 Device Entries 131
6.4 Hardware Devices 133
6.5 Special Devices 136
6.6 PTYs 142
6.7 ioctl 144

7 The /proc File System 147
7.1 Extracting Information from /proc 148
7.2 Process Entries 150
7.3 Hardware Information 158
7.4 Kernel Information 160
7.5 Drives, Mounts, and File Systems 161
7.6 System Statistics 165

8 Linux System Calls 167
8.1 Using strace 168
8.2 access:Testing File Permissions 169
8.3 fcntl: Locks and Other File

Operations 171
8.4 fsync and fdatasync: Flushing Disk

Buffers 173
8.5 getrlimit and setrlimit: Resource

Limits 174
8.6 getrusage: Process Statistics 175
8.7 gettimeofday:Wall-Clock Time 176

viiContents

00 0430 FM 5/22/01 2:32 PM Page vii

8.8 The mlock Family: Locking Physical
Memory 177

8.9 mprotect: Setting Memory
Permissions 179

8.10 nanosleep: High-Precision Sleeping 181
8.11 readlink: Reading Symbolic Links 182
8.12 sendfile: Fast Data Transfers 183
8.13 setitimer: Setting Interval Timers 185
8.14 sysinfo: Obtaining System Statistics 186
8.15 uname 187

9 Inline Assembly Code 189
9.1 When to Use Assembly Code 190
9.2 Simple Inline Assembly 191
9.3 Extended Assembly Syntax 192
9.4 Example 194
9.5 Optimization Issues 196
9.6 Maintenance and Portability Issues 196

10 Security 197
10.1 Users and Groups 198
10.2 Process User IDs and Process

Group IDs 199
10.3 File System Permissions 200
10.4 Real and Effective IDs 205
10.5 Authenticating Users 208
10.6 More Security Holes 211

11 A Sample GNU/Linux
Application 219
11.1 Overview 219
11.2 Implementation 221
11.3 Modules 239
11.4 Using the Server 252
11.5 Finishing Up 255

viii Contents

00 0430 FM 5/22/01 2:32 PM Page viii

III Appendixes 257

A Other Development Tools 259
A.1 Static Program Analysis 259
A.2 Finding Dynamic Memory Errors 261
A.3 Profiling 269

B Low-Level I/O 281
B.1 Reading and Writing Data 282
B.2 stat 291
B.3 Vector Reads and Writes 293
B.4 Relation to Standard C Library I/O

Functions 295
B.5 Other File Operations 296
B.6 Reading Directory Contents 296

C Table of Signals 301

D Online Resources 303
D.1 General Information 303
D.2 Information About GNU/Linux

Software 304
D.3 Other Sites 304

E Open Publication License
Version 1.0 305
I. Requirement on Both Unmodified and

Modified Versions 305
II. Copyright 306
III. Scope of License 306
IV. Requirements on Modified Works 306
V. Good-Practice Recommendations 306
VI. License Options 307
Open Publication Policy Appendix 307

ixContents

00 0430 FM 5/22/01 3:18 PM Page ix

F GNU General Public License 309
Preamble 309
Terms and Conditions for Copying,
Distribution and Modification 310
End of Terms and Conditions 315
How to Apply These Terms to Your New
Programs 315

Index 317

x Contents

00 0430 FM 5/22/01 2:32 PM Page x

00 0430 FM 5/22/01 2:32 PM Page xi

Table of Program Listings

1.1 main.c (C source file), 6
1.2 reciprocal.cpp (C++ source file), 6
1.3 reciprocal.hpp (header file), 7
2.1 arglist.c (argc and argv parameters), 18
2.2 getopt_long.c (getopt_long function), 21
2.3 print_env.c (printing execution

environment), 26
2.4 client.c (network client program), 26
2.5 temp_file.c (mkstemp function), 28
2.6 readfile.c (resource allocation during error

checking), 35
2.7 test.c (library contents), 37
2.8 app.c (program with library functions), 37
2.9 tifftest.c (libtiff library), 40
3.1 print-pid.c (printing process IDs), 46
3.2 system.c (system function), 48
3.3 fork.c (fork function), 49
3.4 fork-exec.c (fork and exec functions), 51
3.5 sigusr1.c (signal handlers), 54
3.6 zombie.c (zombie processes), 58
3.7 sigchld.c (cleaning up child processes), 60
4.1 thread-create.c (creating threads), 63
4.2 thread-create2 (creating two threads),

64
4.3 thread-create2.c (revised main function), 65
4.4 primes.c (prime number computation in a

thread), 67
4.5 detached.c (creating detached threads), 69
4.6 critical-section.c (critical sections), 71
4.7 tsd.c (thread-specific data), 73
4.8 cleanup.c (cleanup handlers), 75
4.9 cxx-exit.cpp (C++ thread cleanup), 76
4.10 job-queue1.c (thread race conditions), 78
4.11 job-queue2.c (mutexes), 80
4.12 job-queue3.c (semaphores), 84
4.13 spin-condvar.c (condition variables), 87

00 0430 FM 5/22/01 2:32 PM Page xii

4.14 condvar.c (condition variables), 90
4.15 thread-pid (printing thread process IDs), 92
5.1 shm.c (shared memory), 99
5.2 sem_all_deall.c (semaphore allocation and

deallocation), 102
5.3 sem_init.c (semaphore initialization), 102
5.4 sem_pv.c (semaphore wait and post

operations), 104
5.5 mmap-write.c (mapped memory), 106
5.6 mmap-read.c (mapped memory), 107
5.7 pipe.c (parent-child process

communication), 111
5.8 dup2.c (output redirection), 113
5.9 popen.c (popen command), 114
5.10 socket-server.c (local sockets), 120
5.11 socket-client.c (local sockets), 121
5.12 socket-inet.c (Internet-domain sockets), 124
6.1 random_number.c (random number

generation), 138
6.2 cdrom-eject.c (ioctl example), 144
7.1 clock-speed.c (cpu clock speed from

/proc/cpuinfo), 149
7.2 get-pid.c (process ID from /proc/self),

151
7.3 print-arg-list.c (printing process argument

lists), 153
7.4 print-environment.c (process environment),

154
7.5 get-exe-path.c (program executable path), 155
7.6 open-and-spin.c (opening files), 157
7.7 print-uptime.c (system uptime and idle time),

165
8.1 check-access.c (file access permissions), 170
8.2 lock-file.c (write locks), 171
8.3 write_journal_entry.c (data buffer

flushing), 173
8.4 limit-cpu.c (resource limits), 175
8.5 print-cpu-times.c (process statistics), 176

xiiiProgram Listings

00 0430 FM 5/22/01 2:32 PM Page xiii

8.6 print-time.c (date/time printing), 177
8.7 mprotect.c (memory access), 180
8.8 better_sleep.c (high-precision sleep), 182
8.9 print-symlink.c (symbolic links), 183
8.10 copy.c (sendfile system call), 184
8.11 itemer.c (interal timers), 185
8.12 sysinfo.c (system statistics), 187
8.13 print-uname (version number and

hardware information), 188
9.1 bit-pos-loop.c (bit position with loop),

194
9.2 bit-pos-asm.c (bit position with bsrl), 195
10.1 simpleid.c (printing user and

group IDs), 200
10.2 stat-perm.c (viewing file permissions with

stat system call), 202
10.3 setuid-test.c (setuid programs), 207
10.4 pam.c (PAM example), 209
10.5 temp-file.c (temporary file creation),

214
10.6 grep-dictionary.c (word search), 216
11.1 server.h (function and variable

declarations), 222
11.2 common.c (utility functions), 223
11.3 module.c (loading server modules),

226
11.4 server.c (server implementation), 228
11.5 main.c (main server program), 235
11.6 time.c (show wall-clock time), 239
11.7 issue.c (GNU/Linux distribution

information), 240
11.8 diskfree.c (free disk space information), 242
11.9 processes.c (summarizing running

processes), 244
11.10 Makefile (Makefile for sample application

program), 252

xiv Program Listings

00 0430 FM 5/22/01 2:32 PM Page xiv

A.1 hello.c (Hello World), 260
A.2 malloc-use.c (dynamic memory allocation),

267
A.3 calculator.c (main calculator program),

274
A.4 number.c (unary number implementation),

276
A.5 stack.c (unary number stack), 279
A.6 definitions.h (header file for calculator

program), 280
B.1 create-file.c (create a new file), 284
B.2 timestamp.c (append a timestamp), 285
B.3 write-all.c (write all buffered data), 286
B.4 hexdump.c (print a hexadecimal file dump),

287
B.5 lseek-huge.c (creating large files), 289
B.6 read-file.c (reading files into buffers),

292
B.7 write-args.c (writev function), 294
B.8 listdir.c (printing directory listings), 297

xvProgram Listings

00 0430 FM 5/22/01 2:32 PM Page xv

xvi

About the Authors
Mark Mitchell received a bachelor of arts degree in computer
science from Harvard in 1994 and a master of science degree from
Stanford in 1999. His research interests centered on computational
complexity and computer security. Mark has participated substantially
in the development of the GNU Compiler Collection, and he has a
strong interest in developing quality software.

Jeffrey Oldham received a bachelor of arts degree in computer
science from Rice University in 1991.After working at the Center for
Research on Parallel Computation, he obtained a doctor of philoso-
phy degree from Stanford in 2000. His research interests center on
algorithm engineering, concentrating on flow and other combinator-
ial algorithms. He works on GCC and scientific computing software.

Alex Samuel graduated from Harvard in 1995 with a degree in
physics. He worked as a software engineer at BBN before returning
to study physics at Caltech and the Stanford Linear Accelerator
Center.Alex administers the Software Carpentry project and works
on various other projects, such as optimizations in GCC.

Mark and Alex founded CodeSourcery LLC together in 1999.
Jeffrey joined the company in 2000. CodeSourcery’s mission is to
provide development tools for GNU/Linux and other operating
systems; to make the GNU tool chain a commercial-quality,
standards-conforming development tool set; and to provide general
consulting and engineering services. CodeSourcery’s Web site is
http://www.codesourcery.com.

00 0430 FM 5/22/01 2:32 PM Page xvi

xvii

About the Technical Reviewers
These reviewers contributed their considerable hands-on expertise to the entire devel-
opment process for Advanced Linux Programming.As the book was being written, these
dedicated professionals reviewed all the material for technical content, organization,
and flow.Their feedback was critical to ensuring that Advanced Linux Programming fits
our reader’s need for the highest quality technical information.

Glenn Becker has many degrees, all in theatre. He presently works as an
online producer for SCIFI.COM, the online component of the SCI FI
channel, in New York City.At home he runs Debian GNU/Linux and
obsesses about such topics as system administration, security, software
internationalization, and XML.

John Dean received a BSc(Hons) from the University of Sheffield in
1974, in pure science.As an undergraduate at Sheffield, John developed
his interest in computing. In 1986 he received a MSc from Cranfield
Institute of Science and Technology in Control Engineering.While work-
ing for Roll Royce and Associates, John became involved in developing
control software for computer-aided inspection equipment of nuclear
steam-raising plants. Since leaving RR&A in 1978, he has worked in the
petrochemical industry developing and maintaining process control soft-
ware. John worked a volunteer software developer for MySQL from 1996
until May 2000, when he joined MySQL as a full-time employee. John’s area of
responsibility is MySQL on MS Windows and developing a new MySQL GUI
client using Trolltech’s Qt GUI application toolkit on both Windows and
platforms that run X-11.

00 0430 FM 5/22/01 2:32 PM Page xvii

xviii

Acknowledgments
We greatly appreciate the pioneering work of Richard Stallman, without whom
there would never have been the GNU Project, and of Linus Torvalds, without
whom there would never have been the Linux kernel. Countless others have worked
on parts of the GNU/Linux operating system, and we thank them all.

We thank the faculties of Harvard and Rice for our undergraduate educations, and
Caltech and Stanford for our graduate training. Without all who taught us, we would
never have dared to teach others!

W. Richard Stevens wrote three excellent books on UNIX programming, and we have
consulted them extensively. Roland McGrath, Ulrich Drepper, and many others wrote
the GNU C library and its outstanding documentation.

Robert Brazile and Sam Kendall reviewed early outlines of this book and made won-
derful suggestions about tone and content. Our technical editors and reviewers (espe-
cially Glenn Becker and John Dean) pointed out errors, made suggestions, and provided
continuous encouragement. Of course, any errors that remain are no fault of theirs!

Thanks to Ann Quinn, of New Riders, for handling all the details involved in publish-
ing a book; Laura Loveall, also of New Riders, for not letting us fall too far behind on
our deadlines; and Stephanie Wall, also of New Riders, for encouraging us to write
this book in the first place!

00 0430 FM 5/22/01 2:32 PM Page xviii

xix

Tell Us What You Think

As the reader of this book, you are the most important critic and commentator.We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

As the Executive Editor for the Web Development team at New Riders Publishing, I
welcome your comments.You can fax, email, or write me directly to let me know
what you did or didn’t like about this book—as well as what we can do to make our
books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or fax number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Fax: 317-581-4663
Email: Stephanie.Wall@newriders.com

Mail: Stephanie Wall
Executive Editor
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 0430 FM 5/22/01 2:32 PM Page xix

xx

Introduction
GNU/Linux has taken the world of computers by storm.At one time, personal com-
puter users were forced to choose among proprietary operating environments and
applications. Users had no way of fixing or improving these programs, could not look
“under the hood,” and were often forced to accept restrictive licenses. GNU/Linux
and other open source systems have changed that—now PC users, administrators, and
developers can choose a free operating environment complete with tools, applications,
and full source code.

A great deal of the success of GNU/Linux is owed to its open source nature.
Because the source code for programs is publicly available, everyone can take part in
development, whether by fixing a small bug or by developing and distributing a com-
plete major application.This opportunity has enticed thousands of capable developers
worldwide to contribute new components and improvements to GNU/Linux, to the
point that modern GNU/Linux systems rival the features of any proprietary system,
and distributions include thousands of programs and applications spanning many CD-
ROMs or DVDs.

The success of GNU/Linux has also validated much of the UNIX philosophy.
Many of the application programming interfaces (APIs) introduced in AT&T and BSD
UNIX variants survive in Linux and form the foundation on which programs are
built.The UNIX philosophy of many small command line-oriented programs working
together is the organizational principle that makes GNU/Linux so powerful. Even
when these programs are wrapped in easy-to-use graphical user interfaces, the under-
lying commands are still available for power users and automated scripts.

A powerful GNU/Linux application harnesses the power of these APIs and com-
mands in its inner workings. GNU/Linux’s APIs provide access to sophisticated fea-
tures such as interprocess communication, multithreading, and high-performance
networking.And many problems can be solved simply by assembling existing com-
mands and programs using simple scripts.

GNU and Linux
Where did the name GNU/Liux come from? You’ve certainly heard of Linux before,
and you may have heard of the GNU Project.You may not have heard the name
GNU/Linux, although you’re probably familiar with the system it refers to.

Linux is named after Linus Torvalds, the creator and original author of the kernel
that runs a GNU/Linux system.The kernel is the program that performs the most
basic functions of an operating system: It controls and interfaces with the computer’s
hardware, handles allocation of memory and other resources, allows multiple programs
to run at the same time, manages the file system, and so on.

00 0430 FM 5/22/01 2:32 PM Page xx

xxi

The kernel by itself doesn’t provide features that are useful to users. It can’t even
provide a simple prompt for users to enter basic commands. It provides no way for
users to manage or edit files, communicate with other computers, or write other pro-
grams.These tasks require the use of a wide array of other programs, including com-
mand shells, file utilities, editors, and compilers. Many of these programs, in turn, use
libraries of general-purpose functions, such as the library containing standard C library
functions, which are not included in the kernel.

On GNU/Linux systems, many of these other programs and libraries are software
developed as part of the GNU Project.1 A great deal of this software predates the
Linux kernel.The aim of the GNU Project is “to develop a complete UNIX-like
operating system which is free software” (from the GNU Project Web site,
http://www.gnu.org).

The Linux kernel and software from the GNU Project has proven to be a powerful
combination.Although the combination is often called “Linux” for short, the complete
system couldn’t work without GNU software, any more than it could operate without
the kernel. For this reason, throughout this book we’ll refer to the complete system as
GNU/Linux, except when we are specifically talking about the Linux kernel.

The GNU General Public License
The source code contained in this book is covered by the GNU General Public License
(GPL), which is listed in Appendix F,“GNU General Public License.”A great deal of
free software, especially GNU/Linux software, is licensed under it. For instance, the
Linux kernel itself is licensed under the GPL, as are many other GNU programs and
libraries you’ll find in GNU/Linux distributions. If you use the source code in this
book, be sure to read and understand the terms of the GPL.

The GNU Project Web site includes an extensive discussion of the GPL
(http://www.gnu.org/copyleft/) and other free software licenses.You can
find information about open source software licenses at http://www.opensource.org/
licenses/index.html.

Who Should Read This Book?
This book is intended for three types of readers:

n You might be a developer already experienced with programming for the
GNU/Linux system, and you want to learn about some of its advanced features
and capabilities.You might be interested in writing more sophisticated programs
with features such as multiprocessing, multithreading, interprocess communica-
tion, and interaction with hardware devices.You might want to improve your
programs by making them run faster, more reliably, and more securely, or by
designing them to interact better with the rest of the GNU/Linux system.

1. GNU is a recursive acronym: It stands for “GNU’s Not UNIX.”

00 0430 FM 5/22/01 2:32 PM Page xxi

xxii

n You might be a developer experienced with another UNIX-like system who’s
interested in developing GNU/Linux software, too.You might already be famil-
iar with standard APIs such as those in the POSIX specification.To develop
GNU/Linux software, you need to know the peculiarities of the system, its
limitations, additional capabilities, and conventions.

n You might be a developer making the transition from a non-UNIX environ-
ment, such as Microsoft’s Win32 platform.You might already be familiar with
the general principles of writing good software, but you need to know the spe-
cific techniques that GNU/Linux programs use to interact with the system and
with each other.And you want to make sure your programs fit naturally into the
GNU/Linux system and behave as users expect them to.

This book is not intended to be a comprehensive guide or reference to all aspects of
GNU/Linux programming. Instead, we’ll take a tutorial approach, introducing the
most important concepts and techniques, and giving examples of how to use them.
Section 1.5,“Finding More Information,” in Chapter 1,“Getting Started,” contains
references to additional documentation, where you can obtain complete details about
these and other aspects of GNU/Linux programming.

Because this is a book about advanced topics, we’ll assume that you are already
familiar with the C programming language and that you know how to use the stan-
dard C library functions in your programs.The C language is the most widely used
language for developing GNU/Linux software; most of the commands and libraries
that we discuss in this book, and most of the Linux kernel itself, are written in C.

The information in this book is equally applicable to C++ programs because that
language is roughly a superset of C. Even if you program in another language, you’ll
find this information useful because C language APIs and conventions are the lingua
franca of GNU/Linux.

If you’ve programmed on another UNIX-like system platform before, chances are
good that you already know your way around Linux’s low-level I/O functions (open,
read, stat, and so on).These are different from the standard C library’s I/O functions
(fopen, fprintf, fscanf, and so on). Both are useful in GNU/Linux programming, and
we use both sets of I/O functions throughout this book. If you’re not familiar with
the low-level I/O functions, jump to the end of the book and read Appendix B,
“Low-Level I/O,” before you start Chapter 2,“Writing Good GNU/Linux Software.”

00 0430 FM 5/22/01 2:32 PM Page xxii

xxiii

This book does not provide a general introduction to GNU/Linux systems.
We assume that you already have a basic knowledge of how to interact with a
GNU/Linux system and perform basic operations in graphical and command-line
environments. If you’re new to GNU/Linux, start with one of the many excellent
introductory books, such as Michael Tolber’s Inside Linux (New Riders Publishing,
2001).

Conventions
This book follows a few typographical conventions:

n A new term is set in italics the first time it is introduced.
n Program text, functions, variables, and other “computer language” are set in a

fixed-pitch font—for example, printf (“Hello, world!\bksl n”).
n Names of commands, files, and directories are also set in a fixed-pitch font—for

example, cd /.
n When we show interactions with a command shell, we use % as the shell prompt

(your shell is probably configured to use a different prompt). Everything after
the prompt is what you type, while other lines of text are the system’s response.

For example, in this interaction

% uname
Linux

the system prompted you with %.You entered the uname command.The system
responded by printing Linux.

n The title of each source code listing includes a filename in parentheses. If you
type in the listing, save it to a file by this name.You can also download the
source code listings from the Advanced Linux Programming Web site
(http://www.newriders.com or http://www.advancedlinuxprogramming.com).

We wrote this book and developed the programs listed in it using the Red Hat 6.2
distribution of GNU/Linux.This distribution incorporates release 2.2.14 of the Linux
kernel, release 2.1.3 of the GNU C library, and the EGCS 1.1.2 release of the GNU
C compiler.The information and programs in this book should generally be applicable
to other versions and distributions of GNU/Linux as well, including 2.4 releases of
the Linux kernel and 2.2 releases of the GNU C library.

00 0430 FM 5/22/01 2:32 PM Page xxiii

00 0430 FM 5/22/01 2:32 PM Page xxiv

